立即打開
云計算的力量:讓賽車跑得更快

云計算的力量:讓賽車跑得更快

Jaclyn Trop 2022-11-12
F1車隊利用云計算將賽車單圈時間減少了幾毫秒,而正是這幾毫秒的微弱優勢決定了輸贏。

2022年10月22日,參加F1美國大獎賽(U.S. F1 Grand Prix)的法國車手埃斯特班·奧康駕駛雷諾阿爾卑斯F1 A522賽車(Alpine F1 A522 Renault)駛過位于奧斯汀的美洲賽道。圖片來源:CHRIS GRAYTHEN—GETTY IMAGES

十幾名工程師身著印有阿爾卑斯F1車隊(Alpine F1 Team)標志的藍色馬球衫,迅速沖出位于奧斯汀的美洲賽道(Circuit of the Americas)上的車庫,準備沖進維修道并在兩秒內更換冒煙的輪胎。

其他人則仍然緊盯著放置在車庫中央的電腦顯示器。當阿爾卑斯車隊的兩名車手以200英里(約321.87千米)的時速飛過賽道時,他們正和坐在圍場控制室中的另外14名工程師尋找如何再盡力將單圈時間減少幾毫秒的辦法。一級方程式單座敞篷車每秒向云端傳送超過100萬個數據點。這些數據被同步傳送給車隊車庫的工作人員以及大西洋彼岸的數十名支持人員。

在今年10月舉行的一級方程式大獎賽(Formula 1 Grand Prix)中,當比賽進行到第23圈(還剩33圈)時,阿斯頓馬丁車隊(Aston Martin)的蘭斯·斯特羅爾與阿爾卑斯車隊的費爾南多·阿隆索相撞,身著馬球衫的隊員們都屏住了呼吸。阿隆索騰空飛起,落地后撞到護墻上,賽車損壞非常嚴重,碎片四濺,足以損壞他后面賽車的前翼,而后面這輛賽車恰好由阿爾卑斯車隊的另一名車手埃斯特班·奧康駕駛。

憑借賽車實時產生的大量數據,阿爾卑斯車隊的兩位車手繼續完成了比賽,令觀眾驚訝無比。

“費爾南多的賽車碰到了護墻,這是一個大問題,但從數據能夠看出,懸架損壞不嚴重,可以繼續安全行駛?!卑柋八管囮牭氖紫惖拦こ處熚鱽喡 て柋饶吩诮邮堋敦敻弧冯s志采訪時稱?!皵祿@示埃斯特班的賽車輕微受損,但還無需進站更換前翼,而更換前翼將比正常進站多花幾秒鐘?!?/p>

這些天,F1車隊利用云計算將單圈時間減少了幾毫秒,而正是這幾毫秒的微弱優勢決定了輸贏。法國汽車制造商雷諾(Renault)旗下的跑車品牌阿爾卑斯車隊目前正處于劣勢,因此本賽季將全力進行點球成金式的分析,以挑戰紅牛車隊(Red Bull)和梅賽德斯-奔馳車隊(Mercedes-Benz)等預算龐大的衛冕冠軍。

阿爾卑斯車隊的首席執行官勞倫特·羅西表示,對預算少的小車隊來說,數據能夠使這項出了名的昂貴運動平民化,例如使用“最棒的賽車風洞”。研發數字化可以為曾經在巨頭面前處于劣勢的車隊提供公平的競爭環境。

“模擬器不需要投入大量資金,其成本遠低于實際測試?!绷_西說?!叭魏稳硕假I得起?!?/p>

過去幾年,數據驅動方法讓這項運動發生了巨變?,F在的賽車安裝有300多個傳感器,用于測量溫度、輪胎壓力和軌跡等多項數據。本賽季從10支一級方程式車隊收集的數據能夠生成超10億次模擬,每支車隊可以根據模擬結果來制定周末比賽策略。

邁凱輪車隊(McLaren Racing)的商業技術主管愛德華·格林稱:“賽車上裝滿了傳感器,這是因為首發和末位發車者可能相差僅為4%。這項運動的成績差距極小,你必須盡一切可能找到一種獲勝方法?!?/p>

就在25年前,F1賽車用軟盤記錄基本數據,各車隊將軟盤郵寄回本部進行分析?,F在,它們利用云計算在周末比賽期間捕獲1.5TB的數據,并近乎實時將其傳送至世界各地,延時從幾天縮短到幾毫秒。

格林說:“聽起來時間很短。但在一級方程式賽車世界中,幾毫秒就意味著賽道上的幾米?!?/p>

邁凱輪車隊使用戴爾(Dell)的原型設計和模擬軟件以及思科(Cisco)的Webex會議服務器,即使工程師在英國、車手在澳大利亞、賽車在加拿大,也能夠進行協作。

賽場上的10支車隊分別與不同的云技術供應商合作。紅牛車隊使用甲骨文云計算(Oracle Cloud)軟件來分析關鍵決策,如何時進站以及使用哪種輪胎,讓紅牛車隊在奧斯汀成功獲得了車隊總冠軍。法拉利(Ferrari)的F1車隊與亞馬遜網絡服務(Amazon Web Services)合作,該網絡服務為車隊提供云計算和機器學習,用于運行模擬并提高比賽當天的成績。

阿爾卑斯車隊在參加奧斯汀到澳大利亞的23場比賽時,車隊的軟件開發合作伙伴KX同時收集了大量數據進行分析。在比賽當天,這些數據還同步傳輸給位于英國恩斯通的阿爾卑斯工廠和法國維里-沙蒂永的操作室的另外60名工程師。

在從事賽車領域工作之前,KX主要聚焦金融市場,另一個以毫秒為“計價單位”的領域。阿爾卑斯車隊高管們認為,既然可以借鑒KX幫助高速交易員在競爭中獲得一秒優勢的經驗,為什么還要無謂地浪費時間做無用功?

阿爾卑斯車隊的首席信息官內森·賽克斯表示,原始數據本身并非靈丹妙藥。賽車產生的數據越多,整合分析就越具挑戰性,尤其是在試圖弄清楚賽道上其他19輛賽車在任何特定時間的情況時。

他解釋道,一級方程式賽車的下一個前沿將是使用人工智能軟件獲取洞察力并做出相關推斷。只有車隊能夠通過計算機模擬獲得競爭優勢,數據才有用。

賽克斯說:“只有仔細分析海量數據,才可以得到你想要的?!?/p>

但是,即便是無數次的模擬也無法預見斯特羅爾的賽車會在第12個轉彎處與阿隆索的賽車相撞,一舉損壞了阿爾卑斯車隊的兩輛車。阿隆索和奧康最后在20名車手中分別獲得第7名和第11名。

羅西說:“數據可能會在比賽中起到主要作用,有助于提升成績。但成績也會受到一些人為因素的影響,不過這樣也好,這畢竟是一項運動?!保ㄘ敻恢形木W)

譯者:郝秀

審校:汪皓

十幾名工程師身著印有阿爾卑斯F1車隊(Alpine F1 Team)標志的藍色馬球衫,迅速沖出位于奧斯汀的美洲賽道(Circuit of the Americas)上的車庫,準備沖進維修道并在兩秒內更換冒煙的輪胎。

其他人則仍然緊盯著放置在車庫中央的電腦顯示器。當阿爾卑斯車隊的兩名車手以200英里(約321.87千米)的時速飛過賽道時,他們正和坐在圍場控制室中的另外14名工程師尋找如何再盡力將單圈時間減少幾毫秒的辦法。一級方程式單座敞篷車每秒向云端傳送超過100萬個數據點。這些數據被同步傳送給車隊車庫的工作人員以及大西洋彼岸的數十名支持人員。

在今年10月舉行的一級方程式大獎賽(Formula 1 Grand Prix)中,當比賽進行到第23圈(還剩33圈)時,阿斯頓馬丁車隊(Aston Martin)的蘭斯·斯特羅爾與阿爾卑斯車隊的費爾南多·阿隆索相撞,身著馬球衫的隊員們都屏住了呼吸。阿隆索騰空飛起,落地后撞到護墻上,賽車損壞非常嚴重,碎片四濺,足以損壞他后面賽車的前翼,而后面這輛賽車恰好由阿爾卑斯車隊的另一名車手埃斯特班·奧康駕駛。

憑借賽車實時產生的大量數據,阿爾卑斯車隊的兩位車手繼續完成了比賽,令觀眾驚訝無比。

“費爾南多的賽車碰到了護墻,這是一個大問題,但從數據能夠看出,懸架損壞不嚴重,可以繼續安全行駛?!卑柋八管囮牭氖紫惖拦こ處熚鱽喡 て柋饶吩诮邮堋敦敻弧冯s志采訪時稱?!皵祿@示埃斯特班的賽車輕微受損,但還無需進站更換前翼,而更換前翼將比正常進站多花幾秒鐘?!?/p>

這些天,F1車隊利用云計算將單圈時間減少了幾毫秒,而正是這幾毫秒的微弱優勢決定了輸贏。法國汽車制造商雷諾(Renault)旗下的跑車品牌阿爾卑斯車隊目前正處于劣勢,因此本賽季將全力進行點球成金式的分析,以挑戰紅牛車隊(Red Bull)和梅賽德斯-奔馳車隊(Mercedes-Benz)等預算龐大的衛冕冠軍。

阿爾卑斯車隊的首席執行官勞倫特·羅西表示,對預算少的小車隊來說,數據能夠使這項出了名的昂貴運動平民化,例如使用“最棒的賽車風洞”。研發數字化可以為曾經在巨頭面前處于劣勢的車隊提供公平的競爭環境。

“模擬器不需要投入大量資金,其成本遠低于實際測試?!绷_西說?!叭魏稳硕假I得起?!?/p>

過去幾年,數據驅動方法讓這項運動發生了巨變?,F在的賽車安裝有300多個傳感器,用于測量溫度、輪胎壓力和軌跡等多項數據。本賽季從10支一級方程式車隊收集的數據能夠生成超10億次模擬,每支車隊可以根據模擬結果來制定周末比賽策略。

邁凱輪車隊(McLaren Racing)的商業技術主管愛德華·格林稱:“賽車上裝滿了傳感器,這是因為首發和末位發車者可能相差僅為4%。這項運動的成績差距極小,你必須盡一切可能找到一種獲勝方法?!?/p>

就在25年前,F1賽車用軟盤記錄基本數據,各車隊將軟盤郵寄回本部進行分析?,F在,它們利用云計算在周末比賽期間捕獲1.5TB的數據,并近乎實時將其傳送至世界各地,延時從幾天縮短到幾毫秒。

格林說:“聽起來時間很短。但在一級方程式賽車世界中,幾毫秒就意味著賽道上的幾米?!?/p>

邁凱輪車隊使用戴爾(Dell)的原型設計和模擬軟件以及思科(Cisco)的Webex會議服務器,即使工程師在英國、車手在澳大利亞、賽車在加拿大,也能夠進行協作。

賽場上的10支車隊分別與不同的云技術供應商合作。紅牛車隊使用甲骨文云計算(Oracle Cloud)軟件來分析關鍵決策,如何時進站以及使用哪種輪胎,讓紅牛車隊在奧斯汀成功獲得了車隊總冠軍。法拉利(Ferrari)的F1車隊與亞馬遜網絡服務(Amazon Web Services)合作,該網絡服務為車隊提供云計算和機器學習,用于運行模擬并提高比賽當天的成績。

阿爾卑斯車隊在參加奧斯汀到澳大利亞的23場比賽時,車隊的軟件開發合作伙伴KX同時收集了大量數據進行分析。在比賽當天,這些數據還同步傳輸給位于英國恩斯通的阿爾卑斯工廠和法國維里-沙蒂永的操作室的另外60名工程師。

在從事賽車領域工作之前,KX主要聚焦金融市場,另一個以毫秒為“計價單位”的領域。阿爾卑斯車隊高管們認為,既然可以借鑒KX幫助高速交易員在競爭中獲得一秒優勢的經驗,為什么還要無謂地浪費時間做無用功?

阿爾卑斯車隊的首席信息官內森·賽克斯表示,原始數據本身并非靈丹妙藥。賽車產生的數據越多,整合分析就越具挑戰性,尤其是在試圖弄清楚賽道上其他19輛賽車在任何特定時間的情況時。

他解釋道,一級方程式賽車的下一個前沿將是使用人工智能軟件獲取洞察力并做出相關推斷。只有車隊能夠通過計算機模擬獲得競爭優勢,數據才有用。

賽克斯說:“只有仔細分析海量數據,才可以得到你想要的?!?/p>

但是,即便是無數次的模擬也無法預見斯特羅爾的賽車會在第12個轉彎處與阿隆索的賽車相撞,一舉損壞了阿爾卑斯車隊的兩輛車。阿隆索和奧康最后在20名車手中分別獲得第7名和第11名。

羅西說:“數據可能會在比賽中起到主要作用,有助于提升成績。但成績也會受到一些人為因素的影響,不過這樣也好,這畢竟是一項運動?!保ㄘ敻恢形木W)

譯者:郝秀

審校:汪皓

A dozen engineers in blue polo shirts emblazoned with the Alpine F1 Team logo glide across the garage at the Circuit of the Americas in Austin, ready to race into the pit lane and change a smoking tire in two seconds flat.

Others puzzle over computer monitors installed in the center of the garage. They, along with 14 more sitting in a silent mission-control–like room in the paddock, are looking to minimize milliseconds as Alpine’s two drivers race around the track at 200 miles per hour. Formula 1’s open-wheel single-seaters emit more than a million data points per second to the cloud. From there, the information is routed to the team garages as well as to scores of support staff across the Atlantic.

On the 23rd lap—with 33 more to go during October’s Formula 1 Grand Prix—the polo-clad crew holds a collective breath, watching Aston Martin’s Lance Stroll collide with Alpine’s Fernando Alonso. The crash sends Alonso airborne into a wall and generates enough debris to damage the front wing of the car behind him—which happened to be helmed by Alpine’s other driver, Esteban Ocon.

Both Alpine drivers continued the course—to the amazement of spectators—thanks to the copious data the cars generate in real time.

“Fernando’s contact with the barrier was a big one, but we were able to tell from the data that the suspension had not suffered any significant damage and was safe to continue,” Ciaron Pilbeam, chief race engineer for the Alpine team, tells Fortune. “For Esteban’s car, the data showed a small effect on performance but not enough to require changing the front wing at a pit stop, which would have taken several seconds more than a normal pit stop.”

These days, F1 teams use the cloud to shave hundredths of a second off their lap times—the razor-thin margin between winning and losing. Alpine, French automaker Renault’s sports car brand, is an underdog team going all in on Moneyball-style analytics this season to challenge the series’ reigning champs with blockbuster budgets such as Red Bull and Mercedes-Benz.

Data can democratize the notoriously expensive sport for small-budget teams that lack the funds for, say, “the best and greatest wind tunnel,” according to Alpine CEO Laurent Rossi. Digitizing the research and development can level the playing field for teams previously at a disadvantage vis-à-vis the behemoths.

“Simulators are not capital intensive and much cheaper than physical testing,” Rossi says. “Everyone can buy one.”

The data-driven approach has changed the sport dramatically over the past few years. The cars now contain more than 300 sensors measuring a wide range of inputs, including temperature, tire pressure, and trajectory. The figures collected from Formula 1’s 10 teams over the season can generate more than 1 billion simulations that shape each team’s race-weekend strategy.

“The car is packed full of sensors because the difference between pole position and the back of the grid can be as little as 4%,” says Edward Green, head of commercial technology for McLaren Racing. “It’s a sport of superfine margins, and you’ve got to find any single way you can in order to gain an advantage.”

Just 25 years ago, F1 cars recorded rudimentary data on floppy disks that the teams then mailed home for analysis. Now, they use the cloud to capture 1.5 terabytes of data during the race weekend and transmit it across the world in near real time, narrowing latency from a few days to mere milliseconds.

“That doesn’t sound like a lot of time,” Green said. “But in the world of Formula 1, a few milliseconds means a few meters on the track.”

The McLaren team uses Dell’s prototyping and simulation software, as well as Cisco’s Webex conference service, to collaborate even when, for example, the engineers are in England, the drivers are in Australia, and the cars are in Canada.

The 10 teams on the grid use a range of cloud technology providers. Red Bull uses Oracle Cloud software to analyze crucial decisions, such as when to make a pit stop and which tires to use, to clinch the team’s first-place finish in Austin. Ferrari’s F1 team works with Amazon Web Services, which provides cloud computing and machine learning to run simulations and improve race day performance.

Alpine’s software developer partner KX assimilates reams of data for review as the team treads the 23-circuit season that stretches from Austin to Australia. On race day, the data is shared and analyzed with another 60 engineers based at Alpine’s factory in Enstone, U.K., and operations room in Viry-Chatillon, France.

Prior to working with race cars, KX focused on financial markets, another arena where milliseconds matter. Why reinvent the wheel, Alpine executives thought, when they could cut and paste from KX’s experience helping high-speed traders gain a one-second advantage over the competition?

But raw data alone is not a magic bullet, says Nathan Sykes, the Alpine team’s chief information officer. The more data the cars generate, the more challenging it is to organize, especially when trying to account for what the other 19 cars on the track may do at any given time.

The next frontier for Formula 1, he explains, will be software that hones artificial intelligence to extract insight and make relevant inferences. The data is useless unless a team can unlock a competitive advantage through computer modeling.

“It’s a lot of data to see through in order to get to what you want,” Sykes says.

But countless simulations could not have foreseen that Stroll’s car would collide with Alonso’s at turn 12, damaging both Alpine cars in one fell swoop. Alonso and Ocon went on to place seventh and 11th, respectively, out of 20 drivers.

“Data will probably give you the bulk of the performance you want to get,” Rossi says. “And then there will be a bit of the human factor, which is nice, because it’s sports, after all.”

熱讀文章
熱門視頻
掃描二維碼下載財富APP
毛片 小说